0095. Unique Binary Search Trees II¶
Given an integer n
, return all the structurally unique BST's (binary search trees), which has exactly n
nodes of unique values from 1
to n
. Return the answer in any order.
Example 1:
Input: n = 3
Output: [[1,null,2,null,3],[1,null,3,2],[2,1,3],[3,1,null,null,2],[3,2,null,1]]
Example 2:
Input: n = 1
Output: [[1]]
Constraints:
1 <= n <= 8
Analysis¶
start.... i .....end
for all left from start to i - 1:
for all right from i + 1 to end:
root -> left = choose one from all left
root -> right = choose one from all right
- Time Complexity: O(n!) since each node could be the root node, and for each root there could have n - 1 configuration of left (so does right subtree), and doing the process recursively will yield n \times (n - 1) ... \times 1 = n!
Code 1¶
class Solution {
public:
vector<TreeNode*> generateTrees(int n) {
if (n == 0) return {};
return helper(1, n);
}
vector<TreeNode*> helper(int start, int end) {
if (start > end) return {nullptr};
vector<TreeNode*> res;
for (int i = start; i <= end; ++i) {
auto left = helper(start, i - 1), right = helper(i + 1, end);
for (auto a : left) {
for (auto b : right) {
TreeNode *node = new TreeNode(i);
node->left = a;
node->right = b;
res.push_back(node);
}
}
}
return res;
}
};
Code 2: with MEMO + DP¶
class Solution {
public:
vector<TreeNode*> generateTrees(int n) {
if (n == 0) return {};
vector<vector<vector<TreeNode*>>> memo(n, vector<vector<TreeNode*>>(n));
return helper(1, n, memo);
}
vector<TreeNode*> helper(int start, int end, vector<vector<vector<TreeNode*>>>& memo) {
if (start > end) return {nullptr};
if (!memo[start - 1][end - 1].empty()) return memo[start - 1][end - 1];
vector<TreeNode*> res;
for (int i = start; i <= end; ++i) {
auto left = helper(start, i - 1, memo), right = helper(i + 1, end, memo);
for (auto a : left) {
for (auto b : right) {
TreeNode *node = new TreeNode(i);
node->left = a;
node->right = b;
res.push_back(node);
}
}
}
return memo[start - 1][end - 1] = res;
}
};
memo[i][j][k]
: save current tree (root) with left starts from i - 1, right starts from j - 1
Last update:
April 1, 2022