0113. Path Sum II¶
Given the root
of a binary tree and an integer targetSum
, return all root-to-leaf paths where each path's sum equals targetSum
.
A leaf is a node with no children.
Example 1:
Input: root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22
Output: [[5,4,11,2],[5,8,4,5]]
Example 2:
Input: root = [1,2,3], targetSum = 5
Output: []
Example 3:
Input: root = [1,2], targetSum = 0
Output: []
Constraints:
- The number of nodes in the tree is in the range
[0, 5000]
. -1000 <= Node.val <= 1000
-1000 <= targetSum <= 1000
Analysis¶
Similar to path sum, this question requires us to return all the paths, so we need to maintain the path along with the recursion calls.
- Time: O(n^2) because for each
push_back
to theres
, it will requirepath.size()
operation. - Space: O(n) if don't count the return space.
Code¶
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<vector<int>> res;
void dfs(TreeNode* root, int sum, vector<int> path) {
if (!root) return ;
sum -= root -> val;
path.push_back(root -> val);
if (!sum && !root -> left && !root -> right) {
res.push_back(path);
return ;
}
dfs(root -> left, sum, path);
dfs(root -> right, sum, path);
}
vector<vector<int>> pathSum(TreeNode* root, int sum) {
dfs(root, sum, {});
return res;
}
};
Last update:
April 1, 2022