0532. K diff Pairs in an Array¶
Given an array of integers nums
and an integer k
, return the number of unique k-diff pairs in the array.
A k-diff pair is an integer pair (nums[i], nums[j])
, where the following are true:
0 <= i, j < nums.length
i != j
|nums[i] - nums[j]| == k
Notice that |val|
denotes the absolute value of val
.
Example 1:
Input: nums = [3,1,4,1,5], k = 2
Output: 2
Explanation: There are two 2-diff pairs in the array, (1, 3) and (3, 5).
Although we have two 1s in the input, we should only return the number of unique pairs.
Example 2:
Input: nums = [1,2,3,4,5], k = 1
Output: 4
Explanation: There are four 1-diff pairs in the array, (1, 2), (2, 3), (3, 4) and (4, 5).
Example 3:
Input: nums = [1,3,1,5,4], k = 0
Output: 1
Explanation: There is one 0-diff pair in the array, (1, 1).
Example 4:
Input: nums = [1,2,4,4,3,3,0,9,2,3], k = 3
Output: 2
Example 5:
Input: nums = [-1,-2,-3], k = 1
Output: 2
Constraints:
1 <= nums.length <= 104
-10^7 <= nums[i] <= 10^7
0 <= k <= 10^7
Analysis¶
Edge cases: 1. k == 0, in this case, we need to return the pair that they two elements are equal to each other. 2. k < 0, should return 0. 3. handling duplicates pairs: (i, j) = (j, i)
Use a unordered_map<int, int>
to keep track of the cnt of each appeared elements.
- if k == 0, we just need to filter out all the elements that have the count greater than 1.
- else check the complement (curr element + k) if exist in the map. don't need to check element - k.
Time: O(n) Space: O(n) for the unordered_map
Code¶
class Solution {
public:
int findPairs(vector<int>& nums, int k) {
int res = 0;
unordered_map<int, int> m;
for (int num : nums) ++m[num];
for (auto a : m) {
if (k == 0 && a.second > 1) ++res; // multiple duplicate
if (k > 0 && m.count(a.first + k)) ++res;
}
return res;
}
};
Last update:
April 1, 2022